Problem Description
You are given an m x n integer matrix matrix with the following two properties:
- Each row is sorted in non-decreasing order.
- The first integer of each row is greater than the last integer of the previous row.
Given an integer target, return true if target is in matrix or false otherwise.
You must write a solution in O(log(m * n)) time complexity.
Example 1:
Input: matrix = [[1,3,5,7],[10,11,16,20],[23,30,34,60]], target = 3 Output: true
Example 2:
Input: matrix = [[1,3,5,7],[10,11,16,20],[23,30,34,60]], target = 13 Output: false
Constraints:
m == matrix.lengthn == matrix[i].length1 <= m, n <= 100-104 <= matrix[i][j], target <= 104
Difficulty: Medium
Tags: array, binary search, matrix
Rating: 97.41%
Solution
Here’s my Python solution to this problem:
class Solution:
def searchMatrix(self, matrix: List[List[int]], target: int) -> bool:
if not matrix or not matrix[0]:
return False
m, n = len(matrix), len(matrix[0])
l, r = 0, m*n - 1
while l <= r:
mid = l + (r - l) // 2
row = mid // n
col = mid % n
if matrix[row][col] == target:
return True
elif matrix[row][col] > target:
r = mid - 1
else:
l = mid + 1
return False