Problem Description
Given an m x n
binary matrix
filled with 0
’s and 1
’s, find the largest square containing only 1
’s and return its area.
Example 1:

Input: matrix = [[“1”,“0”,“1”,“0”,“0”],[“1”,“0”,“1”,“1”,“1”],[“1”,“1”,“1”,“1”,“1”],[“1”,“0”,“0”,“1”,“0”]] Output: 4
Example 2:

Input: matrix = [[“0”,“1”],[“1”,“0”]] Output: 1
Example 3:
Input: matrix = [[“0”]] Output: 0
Constraints:
m == matrix.length
n == matrix[i].length
1 <= m, n <= 300
matrix[i][j]
is‘0’
or‘1’
.
Difficulty: Medium
Tags: array, dynamic programming, matrix
Rating: 97.78%
Solution
Here’s my Python solution to this problem:
class Solution:
def maximalSquare(self, matrix: List[List[str]]) -> int:
if not matrix: return 0
rows, cols = len(matrix), len(matrix[0])
dp = [[0] * (cols + 1) for _ in range(rows + 1)]
max_side = 0 # Keep track of the maximum side length
for i in range(1, rows + 1):
for j in range(1, cols + 1):
if matrix[i-1][j-1] == '1':
dp[i][j] = min(dp[i-1][j],
dp[i][j-1],
dp[i-1][j-1]
) + 1
max_side = max(max_side, dp[i][j])
return max_side * max_side
Complexity Analysis
The solution has the following complexity characteristics:
- Time Complexity:
- Space Complexity:
Note: This is an automated analysis and may not capture all edge cases or specific algorithmic optimizations.